Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Compressing high-capability Large Language Models (LLMs) has emerged as a favored strategy for resource-efficient inferences. While state-of-the-art (SoTA) compression methods boast impressive advancements in preserving benign task performance, the potential risks of compression in terms of safety and trustworthiness have been largely neglected. This study conducts the first, thorough evaluation of three (3) leading LLMs using five (5) SoTA compression techniques across eight (8) trustworthiness dimensions. Our experiments highlight the intricate interplay between compression and trustworthiness, revealing some interesting patterns. We find that quantization is currently a more effective approach than pruning in achieving efficiency and trustworthiness simultaneously. For instance, a 4-bit quantized model retains the trustworthiness of its original counterpart, but model pruning significantly degrades trustworthiness, even at 50% sparsity. Moreover, employing quantization within a moderate bit range could unexpectedly improve certain trustworthiness dimensions such as ethics and fairness. Conversely, extreme quantization to very low bit levels (3 bits) tends to reduce trustworthiness significantly. This increased risk cannot be uncovered by looking at benign performance alone, in turn, mandating comprehensive trustworthiness evaluation in practice. These findings culminate in practical recommendations for simultaneously achieving high utility, efficiency, and trustworthiness in LLMs.more » « less
-
Significance Defects in two-dimensional (2D) transition-metal dichalcogenides play a crucial role in controlling the spatiotemporal dynamics of photogenerated charge carriers, which remain poorly understood to date. In this paper, the defect-mediated carrier diffusion and recombination in WS2monolayers are quantitatively investigated by laser-illuminated microwave impedance microscopy. Surprisingly, the photoresponse is in general stronger in the more disordered regions and samples. Such counterintuitive observations are reconciled by spatiotemporally resolved experiments, which indicate that the electron lifetime is prolonged due to the slow release of holes from the trap states. The results reveal the intrinsic time and length scales of photocarriers in van der Waals materials, providing the guidance for implementing nanooptoelectronic devices based on 2D semiconductors.more » « less
-
Abstract Room‐temperature magnetic skyrmion materials exhibiting robust topological Hall effect (THE) are crucial for novel nano‐spintronic devices. However, such skyrmion‐hosting materials are rare in nature. In this study, a self‐intercalated transition metal dichalcogenide Cr1+xTe2with a layered crystal structure that hosts room‐temperature skyrmions and exhibits large THE is reported. By tuning the self‐intercalate concentration, a monotonic control of Curie temperature from 169 to 333 K and a magnetic anisotropy transition from out‐of‐plane to the in‐plane configuration are achieved. Based on the intercalation engineering, room‐temperature skyrmions are successfully created in Cr1.53Te2with a Curie temperature of 295 K and a relatively weak perpendicular magnetic anisotropy. Remarkably, a skyrmion‐induced topological Hall resistivity as large as ≈106 nΩ cm is observed at 290 K. Moreover, a sign reversal of THE is also found at low temperatures, which can be ascribed to other topological spin textures having an opposite topological charge to that of the skyrmions. Therefore, chromium telluride can be a new paradigm of the skyrmion material family with promising prospects for future device applications.more » « less
-
Abstract The search for efficient approaches to realize local switching of magnetic moments in spintronic devices has attracted extensive attention. One of the most promising approaches is the electrical manipulation of magnetization through electron‐mediated spin torque. However, the Joule heat generated via electron motion unavoidably causes substantial energy dissipation and potential damage to spintronic devices. Here, all‐oxide heterostructures of SrRuO3/NiO/SrIrO3are epitaxially grown on SrTiO3single‐crystal substrates following the order of the ferromagnetic transition metal oxide SrRuO3with perpendicular magnetic anisotropy, insulating and antiferromagnetic NiO, and metallic transition metal oxide SrIrO3with strong spin–orbit coupling. It is demonstrated that instead of the electron spin torques, the magnon torques present in the antiferromagnetic NiO layer can directly manipulate the perpendicular magnetization of the ferromagnetic layer. This magnon mechanism may significantly reduce the electron motion‐related energy dissipation from electron‐mediated spin currents. Interestingly, the threshold current density to generate a sufficient magnon current to manipulate the magnetization is one order of magnitude smaller than that in conventional metallic systems. These findings suggest a route for developing highly efficient all‐oxide spintronic devices operated by magnon current.more » « less
An official website of the United States government

Full Text Available